ฉันมีพล็อตชุดเวลาในแพ็กเกจ ggplot2 และฉันได้แสดงค่า Moving average และต้องการเพิ่มผลการคำนวณค่าเฉลี่ยเคลื่อนที่ของพล็อตชุดเวลา ตัวอย่างชุดข้อมูล (p31): ambtemp dt -1.14 2007-09-29 00:01:57 -1.12 2007-09-29 00:03:57 -1.33 2007-09-29 00:05:57 -1.44 2007 -09-29 00:07:57 -1.54 2007-09-29 00:09:57 -1.29 2007-09-29 00:11:57 รหัสที่ใช้สำหรับการนำเสนอชุดเวลา: ตัวอย่างของพล็อตค่าเฉลี่ยเคลื่อนที่ตัวอย่างผลการคาดการณ์ ความท้าทายคือข้อมูลชุดเวลาที่ได้รับจากชุดข้อมูลซึ่งรวมถึง timestamps และอุณหภูมิ แต่ข้อมูลเฉลี่ยเคลื่อนที่ประกอบด้วยคอลัมน์โดยเฉลี่ยไม่ใช่ timestamps และการปรับให้เหมาะสมทั้งสองแบบนี้อาจทำให้เกิดความไม่ลงรอยกัน Average Moving Average - SMA ลดลง Simple Moving Average - SMA A ค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายสามารถปรับแต่งได้โดยสามารถคำนวณได้จากช่วงเวลาต่าง ๆ โดยการเพิ่มราคาปิดของการรักษาความปลอดภัยเป็นระยะเวลาหนึ่งและหารจำนวนทั้งหมดตามจำนวนช่วงเวลาซึ่งจะให้ค่าเฉลี่ย ราคาหลักทรัพย์ในช่วงเวลานั้น ค่าเฉลี่ยเคลื่อนที่ที่เรียบช่วยขจัดความผันผวนและทำให้สามารถดูแนวโน้มราคาของหลักทรัพย์ได้ง่ายขึ้น หากค่าเฉลี่ยเคลื่อนที่ขึ้นเล็กน้อยหมายความว่าราคาหลักทรัพย์เพิ่มมากขึ้น หากมีการชี้ลงหมายความว่าราคาหลักทรัพย์ลดลง ระยะเวลาที่ยาวขึ้นสำหรับค่าเฉลี่ยเคลื่อนที่ค่าเฉลี่ยเคลื่อนที่ที่เรียบขึ้น ค่าเฉลี่ยเคลื่อนที่ระยะสั้นมีความผันผวนมากขึ้น แต่การอ่านมีความใกล้เคียงกับข้อมูลต้นฉบับ ความสำคัญเชิงวิเคราะห์ค่าเฉลี่ยเคลื่อนที่เป็นเครื่องมือวิเคราะห์ที่สำคัญซึ่งใช้ในการระบุแนวโน้มราคาในปัจจุบันและศักยภาพในการเปลี่ยนแปลงแนวโน้มที่กำหนดไว้ รูปแบบที่ง่ายที่สุดในการใช้ค่าเฉลี่ยเคลื่อนที่แบบง่ายๆในการวิเคราะห์คือการใช้เพื่อระบุว่าการรักษาความปลอดภัยอยู่ในขาขึ้นหรือขาลงอย่างรวดเร็วหรือไม่ อีกเครื่องมือวิเคราะห์ที่ได้รับความนิยมแม้ว่าจะมีความซับซ้อนมากกว่าเล็กน้อย แต่ก็คือการเปรียบเทียบคู่ค่าเฉลี่ยเคลื่อนที่แบบง่ายๆกับแต่ละเฟรมเวลาที่ต่างกัน หากค่าเฉลี่ยเคลื่อนที่แบบระยะสั้นอยู่เหนือค่าเฉลี่ยระยะยาวคาดว่าจะมีแนวโน้มขาขึ้น ในทางกลับกันค่าเฉลี่ยระยะยาวที่สูงกว่าค่าเฉลี่ยระยะสั้นจะส่งผลให้แนวโน้มการปรับตัวลดลง รูปแบบการค้าที่นิยมใช้รูปแบบการซื้อขายสองรูปแบบที่นิยมใช้ค่าเฉลี่ยเคลื่อนที่แบบง่ายๆ ได้แก่ เครื่องหมายกากบาทและกากบาทสีทอง การเสียชีวิตเกิดขึ้นเมื่อค่าเฉลี่ยเคลื่อนที่ 50 วันที่ต่ำกว่าค่าเฉลี่ยเคลื่อนที่ 200 วัน ถือเป็นสัญญาณขาลงที่มีการขาดทุนเพิ่มขึ้น เครื่องหมายกากบาทสีทองเกิดขึ้นเมื่อค่าเฉลี่ยเคลื่อนที่ระยะสั้นอยู่เหนือค่าเฉลี่ยเคลื่อนที่ในระยะยาว การเพิ่มขึ้นของปริมาณการซื้อขายหลักทรัพย์ที่สูงขึ้นอาจส่งผลให้กำไรเพิ่มขึ้นในพื้นที่เก็บข้อมูลเพิ่มแนวโน้มหรือย้ายเส้นค่าเฉลี่ยไปเป็นแผนภูมิใช้กับ: Excel 2016 Word 2016 PowerPoint 2016 Excel 2013 Word 2013 Outlook 2013 PowerPoint 2013 เพิ่มเติม น้อยกว่าเพื่อแสดงแนวโน้มข้อมูลหรือค่าเฉลี่ยเคลื่อนที่ในแผนภูมิที่คุณสร้างขึ้น คุณสามารถเพิ่มเส้นแนวโน้มได้ นอกจากนี้คุณยังสามารถขยายเส้นแนวโน้มเกินกว่าข้อมูลจริงของคุณเพื่อช่วยในการคาดการณ์ค่าในอนาคต ตัวอย่างเช่นเส้นแนวโน้มดังต่อไปนี้คาดการณ์ล่วงหน้า 2 ไตรมาสและแสดงให้เห็นชัดเจนว่ามีแนวโน้มสูงขึ้นซึ่งน่าจะเป็นไปได้สำหรับการขายในอนาคต คุณสามารถเพิ่มเส้นแนวโน้มลงในแผนภูมิ 2 มิติที่ไม่ได้ถูกจัดวางรวมทั้งพื้นที่แถบเส้นคอลัมน์สต็อกการกระจายและฟองอากาศ คุณไม่สามารถเพิ่มเส้นแนวโน้มลงในแผนภูมิแบบวง, 3 มิติ, เรดาร์, พาย, พื้นผิวหรือโดนัท เพิ่มเส้นแนวโน้มบนแผนภูมิของคุณคลิกชุดข้อมูลที่คุณต้องการเพิ่มเส้นแนวโน้มหรือค่าเฉลี่ยเคลื่อนที่ เส้นแนวโน้มจะเริ่มต้นที่จุดข้อมูลแรกของชุดข้อมูลที่คุณเลือก ทำเครื่องหมายที่ช่อง Trendline หากต้องการเลือกเส้นแนวโน้มประเภทอื่นให้คลิกลูกศรถัดจากเส้นแนวโน้ม แล้วคลิกเลขชี้กำลัง พยากรณ์เชิงเส้น หรือสองค่าเฉลี่ยเคลื่อนที่ระยะเวลา สำหรับเส้นแนวโน้มเพิ่มเติมคลิกตัวเลือกเพิ่มเติม หากคุณเลือก More Options คลิกตัวเลือกที่คุณต้องการในบานหน้าต่าง 'รูปแบบเส้นขอบ' ภายใต้ตัวเลือกของ Trendline ถ้าคุณเลือกพหุนาม ป้อนพลังงานสูงสุดสำหรับตัวแปรอิสระในกล่องคำสั่งซื้อ หากเลือก Moving Average ป้อนจำนวนงวดที่จะใช้ในการคำนวณค่าเฉลี่ยเคลื่อนที่ในช่องงวด เคล็ดลับ: เส้นแนวโน้มมีความถูกต้องที่สุดเมื่อค่า R-squared (ตัวเลขตั้งแต่ 0 ถึง 1 แสดงให้เห็นว่าค่าประมาณสำหรับเส้นแนวโน้มใกล้เคียงกับข้อมูลจริงของคุณมากน้อยเพียงใด) อยู่ที่หรือใกล้เคียง 1. เมื่อคุณเพิ่มเส้นแนวโน้มลงในข้อมูลของคุณ , Excel จะคำนวณค่า R-squared โดยอัตโนมัติ คุณสามารถแสดงค่านี้ในแผนภูมิของคุณได้โดยการตรวจสอบค่า Display R-squared ในกล่องแผนภูมิ (แผงเส้นแนวโน้มรูปแบบตัวเลือก Trendline) คุณสามารถเรียนรู้เพิ่มเติมเกี่ยวกับตัวเลือกเส้นแนวโน้มทั้งหมดในส่วนด้านล่าง เส้นแนวโน้มเชิงเส้นใช้เส้นแบบนี้เพื่อสร้างเส้นตรงที่ดีที่สุดสำหรับชุดข้อมูลเชิงเส้นอย่างง่าย ข้อมูลของคุณเป็นเส้นตรงถ้ารูปแบบในจุดข้อมูลมีลักษณะเป็นเส้น เส้นแนวโน้มจะแสดงให้เห็นว่ามีบางอย่างที่เพิ่มขึ้นหรือลดลงในอัตราที่คงที่ เส้นตรงใช้สมการนี้ในการคำนวณสมการกำลังสองอย่างน้อยที่สุดสำหรับเส้น: โดย m คือความลาดชันและ b คือการสกัดกั้น เส้นแสดงแนวโน้มต่อไปนี้แสดงให้เห็นว่ายอดขายตู้เย็นเพิ่มขึ้นอย่างต่อเนื่องตลอดระยะเวลา 8 ปี สังเกตว่าค่า R-squared (ตัวเลขตั้งแต่ 0 ถึง 1 แสดงให้เห็นว่าค่าประมาณสำหรับเส้นแนวโน้มใกล้เคียงกับข้อมูลจริงของคุณมากน้อยแค่ไหน) เป็น 0.9792 ซึ่งเป็นเส้นที่เหมาะสมกับข้อมูล เส้นโค้งที่พอดีกับเส้นโค้งที่ดีที่สุดเส้นแนวโน้มนี้จะเป็นประโยชน์เมื่ออัตราการเปลี่ยนแปลงข้อมูลเพิ่มขึ้นหรือลดลงอย่างรวดเร็วและลดระดับลง เส้นค่าลอการิทึมสามารถใช้ค่าลบและค่าบวกได้ เส้นรอบวงลอการิทึมใช้สมการนี้ในการคำนวณสมการสี่เหลี่ยมที่เล็กที่สุดผ่านจุด: c และ b เป็นค่าคงที่และ ln เป็นฟังก์ชันลอการิทึมธรรมชาติ เส้นค่าลอการิทึมต่อไปนี้แสดงการเติบโตของประชากรที่คาดการณ์ไว้ของสัตว์ในพื้นที่ว่างคงที่โดยที่ประชากรลดลงเป็นพื้นที่สำหรับสัตว์ลดลง โปรดทราบว่าค่า R-squared เท่ากับ 0.933 ซึ่งเป็นเส้นที่เหมาะสมกับข้อมูล เส้นแนวโน้มนี้มีประโยชน์เมื่อข้อมูลของคุณผันผวน ตัวอย่างเช่นเมื่อคุณวิเคราะห์ผลกำไรและขาดทุนจากชุดข้อมูลขนาดใหญ่ ลำดับของพหุนามสามารถกำหนดได้จากจำนวนความผันผวนของข้อมูลหรือจำนวนโค้ง (เนินเขาและหุบเขา) ปรากฏในเส้นโค้ง โดยปกติคำสั่ง Order 2 polynomial trendline มีเพียงเนินเขาหรือหุบเขาคำสั่ง Order 3 มีภูเขาหรือหุบเขาหนึ่งหรือสองแห่งและลำดับที่ 4 มีถึง 3 เนินหรือหุบเขา เส้นรอบวงหรือ curvilinear trendline ใช้สมการนี้ในการคำนวณสมการอย่างน้อยสี่เหลี่ยมผ่านจุด: ที่ b และเป็นค่าคงที่ พหุนามสองสายสั่งซื้อ (หนึ่งเนิน) แสดงความสัมพันธ์ระหว่างความเร็วในการขับขี่และการสิ้นเปลืองน้ำมันเชื้อเพลิง สังเกตว่าค่า R-squared เท่ากับ 0.979 ซึ่งใกล้เคียงกับ 1 ดังนั้นเส้นจะพอดีกับข้อมูล แสดงเส้นโค้งเส้นแนวโน้มนี้มีประโยชน์สำหรับชุดข้อมูลที่เปรียบเทียบการวัดที่เพิ่มขึ้นในอัตราเฉพาะ ตัวอย่างเช่นการเร่งความเร็วของรถแข่งในช่วงเวลา 1 วินาที คุณไม่สามารถสร้างเส้นแนวโน้มกำลังได้ถ้าข้อมูลของคุณมีค่าเป็นศูนย์หรือค่าลบ เส้นกำลังกำลังใช้สมการนี้เพื่อคำนวณสมการกำลังสองอย่างน้อยที่สุดผ่านจุด: c และ b เป็นค่าคงที่ หมายเหตุ: ตัวเลือกนี้จะใช้ไม่ได้เมื่อข้อมูลของคุณมีค่าเป็นลบหรือเป็นศูนย์ แผนภูมิวัดระยะทางต่อไปนี้แสดงระยะทางเป็นหน่วยเป็นวินาที เส้นแรงที่แสดงให้เห็นถึงการเพิ่มขึ้นอย่างรวดเร็ว โปรดทราบว่าค่า R-squared เท่ากับ 0.986 ซึ่งเป็นเส้นที่สมบูรณ์แบบเกือบทั้งหมดของข้อมูล แสดงเส้นโค้งเส้นแนวโน้มนี้มีประโยชน์เมื่อค่าข้อมูลเพิ่มขึ้นหรือลดลงอย่างต่อเนื่องตามอัตราที่เพิ่มขึ้น คุณไม่สามารถสร้างเส้นแสดงแนวโน้มเป็นตัวเลขได้หากข้อมูลของคุณมีค่าเป็นศูนย์หรือค่าลบ เสนเสนยอยใชสมการนี้เพื่อคํานวณสมการสแควรอยางนอยที่สุดโดยที่จุด c และ b เปนคาคงที่และ e เปนฐานของลอการิทึมตามธรรมชาติ เส้นแสดงเส้นโครงร่างต่อไปนี้แสดงถึงปริมาณคาร์บอน 14 ที่ลดลงในวัตถุเมื่ออายุมากขึ้น โปรดทราบว่าค่า R-squared เท่ากับ 0.990 ซึ่งหมายความว่าเส้นตรงกับข้อมูลเกือบสมบูรณ์ เส้นแนวโน้มการเคลื่อนที่เฉลี่ยแนวโน้มนี้จะแสดงถึงความผันผวนของข้อมูลเพื่อแสดงรูปแบบหรือแนวโน้มที่ชัดเจนขึ้น ค่าเฉลี่ยเคลื่อนที่จะใช้จำนวนจุดข้อมูลที่ระบุ (กำหนดโดยตัวเลือก Period) โดยให้ค่าเฉลี่ยโดยเฉลี่ยและใช้ค่าเฉลี่ยเป็นจุดในบรรทัด ตัวอย่างเช่นถ้ากำหนดระยะเวลาเป็น 2 ค่าเฉลี่ยของจุดข้อมูลสองจุดแรกจะใช้เป็นจุดแรกในเส้นแนวโน้มเฉลี่ยเคลื่อนไหว ค่าเฉลี่ยของจุดข้อมูลที่สองและสามใช้เป็นจุดที่สองในเส้นแนวโน้ม ฯลฯ เส้นแนวโน้มค่าเฉลี่ยเคลื่อนที่ใช้สมการนี้: จำนวนจุดในเส้นแนวโน้มเฉลี่ยเคลื่อนที่เท่ากับจำนวนจุดทั้งหมดในชุดลบด้วย หมายเลขที่คุณระบุสำหรับงวด ในแผนภูมิกระจายเส้นแนวโน้มจะขึ้นอยู่กับลำดับของค่า x ในแผนภูมิ สำหรับผลลัพธ์ที่ดีขึ้นให้จัดเรียงค่า x ก่อนที่จะเพิ่มค่าเฉลี่ยเคลื่อนที่ เส้นค่าเฉลี่ยเคลื่อนที่ต่อไปนี้แสดงรูปแบบของจำนวนบ้านที่ขายได้ในช่วง 26 สัปดาห์ 8.4 แบบจำลองการเคลื่อนที่โดยเฉลี่ยแทนที่จะใช้ค่าที่ผ่านมาของตัวแปรพยากรณ์ในการถดถอยแบบจำลองค่าเฉลี่ยเคลื่อนที่จะใช้ข้อผิดพลาดในการคาดการณ์ที่ผ่านมาในการถดถอย - ชอบแบบ y c et theta e theta e จุด theta e ที่ et มีเสียงสีขาว เราอ้างถึงนี้เป็นรูปแบบ MA (q) แน่นอนว่าเราไม่ได้สังเกตค่าของเอตดังนั้นจึงไม่ใช่การถดถอยตามความหมายปกติ สังเกตว่าแต่ละค่าของ yt สามารถคิดได้ว่าเป็นค่าเฉลี่ยถ่วงน้ำหนักของข้อผิดพลาดในการคาดการณ์ที่ผ่านมา อย่างไรก็ตามแบบจำลองค่าเฉลี่ยเคลื่อนที่ไม่ควรสับสนกับการปรับค่าเฉลี่ยการเคลื่อนที่โดยเฉลี่ยที่เรากล่าวถึงในบทที่ 6 โมเดลเฉลี่ยถ่วงน้ำหนักใช้สำหรับคาดการณ์ค่าในอนาคตขณะที่ใช้การปรับค่าเฉลี่ยโดยเฉลี่ยเพื่อใช้ประเมินแนวโน้มรอบของค่าในอดีต รูปที่ 8.6: ตัวอย่างสองตัวอย่างของข้อมูลจากโมเดลเฉลี่ยเคลื่อนที่ที่มีพารามิเตอร์ต่างกัน ซ้าย: MA (1) กับ y t 20e t 0.8e t-1 ขวา: MA (2) ด้วย y t e t - e t -1 0.8e t-2 ในทั้งสองกรณี e t จะกระจายสัญญาณรบกวนสีขาวเป็นปกติโดยมีค่าเฉลี่ยศูนย์และค่าความแปรปรวน 1 รูปที่ 8.6 แสดงข้อมูลบางส่วนจากแบบจำลอง MA (1) และ MA (2) การเปลี่ยนพารามิเตอร์ theta1, dots, thetaq ส่งผลให้รูปแบบชุดเวลาต่างกัน เช่นเดียวกับโมเดลอัตถดถอยความแปรปรวนของเทอมข้อผิดพลาด et จะเปลี่ยนขนาดของชุดไม่ใช่รูปแบบ สามารถเขียนแบบ AR (p) แบบ stationary เป็นแบบ MA (infty) ได้ ตัวอย่างเช่นการใช้การทดแทนซ้ำเราสามารถแสดงให้เห็นถึงรูปแบบ AR (1) นี้: เริ่มต้นแอ็พพลิเคชัน amp phi1y et amp phi1 (phi1y e) และ amp phi12y phi1 e และ amp phi13y phi12e phi1 e และ amptext end Provided -1 lt phi1 lt 1 ค่าของ phi1k จะเล็กลงเมื่อ k มีขนาดใหญ่ขึ้น ดังนั้นในที่สุดเราจึงได้รับ yt et phi1 e phi12 e phi13 e cdots กระบวนการ MA (infty) ผลย้อนกลับถือถ้าเรากำหนดข้อ จำกัด บางประการเกี่ยวกับพารามิเตอร์ MA จากนั้นแบบจำลอง MA เรียกว่า invertible นั่นคือเราสามารถเขียนกระบวนการ MA (q) invertible เป็นกระบวนการ AR (infty) ได้ โมเดลที่ไม่สามารถผันกลับไม่ได้ทำให้เราสามารถแปลงจากโมเดล MA ไปเป็น AR ได้ พวกเขายังมีคุณสมบัติทางคณิตศาสตร์บางอย่างที่ช่วยให้สามารถใช้งานได้ง่ายขึ้น ข้อ จำกัด invertible มีความคล้ายคลึงกับข้อ จำกัด stationarity สำหรับแบบจำลอง MA (1): -1lttheta1lt1 สำหรับโมเดล MA (2): -1lttheta2lt1, theta2theta1 gt-1, theta1 - theta2 lt 1. เงื่อนไขที่ซับซ้อนขึ้นสำหรับ qge3 อีกครั้ง R จะดูแลข้อ จำกัด เหล่านี้เมื่อประมาณแบบจำลอง
Comments
Post a Comment